大学入学共通テスト(数学) 過去問
令和4年度(2022年度)本試験
問38 (数学Ⅰ・数学A(第3問) 問10)
問題文
複数人がそれぞれプレゼントを一つずつ持ち寄り、交換会を開く。ただし、プレゼントはすべて異なるとする。プレゼントの交換は次の手順で行う。
手順
外見が同じ袋を人数分用意し、各袋にプレゼントを一つずつ入れたうえで、各参加者に袋を一つずつでたらめに配る。各参加者は配られた袋の中のプレゼントを受け取る。
交換の結果、1人でも自分の持参したプレゼントを受け取った場合は、交換をやり直す。そして、全員が自分以外の人の持参したプレゼントを受け取ったところで交換会を終了する。
(3)5人で交換会を開く場合、1回目の交換で交換会が終了する確率は( チツ/テト )である。
このページは閲覧用ページです。
履歴を残すには、 「新しく出題する(ここをクリック)」 をご利用ください。
問題
大学入学共通テスト(数学)試験 令和4年度(2022年度)本試験 問38(数学Ⅰ・数学A(第3問) 問10) (訂正依頼・報告はこちら)
複数人がそれぞれプレゼントを一つずつ持ち寄り、交換会を開く。ただし、プレゼントはすべて異なるとする。プレゼントの交換は次の手順で行う。
手順
外見が同じ袋を人数分用意し、各袋にプレゼントを一つずつ入れたうえで、各参加者に袋を一つずつでたらめに配る。各参加者は配られた袋の中のプレゼントを受け取る。
交換の結果、1人でも自分の持参したプレゼントを受け取った場合は、交換をやり直す。そして、全員が自分以外の人の持参したプレゼントを受け取ったところで交換会を終了する。
(3)5人で交換会を開く場合、1回目の交換で交換会が終了する確率は( チツ/テト )である。
- 11/30
- 11/35
- 15/30
- 15/35
正解!素晴らしいです
残念...
この過去問の解説 (1件)
01
場合の数と確率の問題です。
公式をきちんと使えることも大切ですが、
数が少ない場合は実際に考えられるパターンを書いてみて、
自分の回答が間違っていないか確認するようにしましょう。
前問と同様に考えます。
1回目の交換で交換会が終了しない受け取り方は、以下の5つの場合に分けられます。
(1)ちょうど1人が自分の持参したプレゼントを受け取る場合
(2)ちょうど2人が自分の持参したプレゼントを受け取る場合
(3)ちょうど3人が自分の持参したプレゼントを受け取る場合
(4)ちょうど4人が自分の持参したプレゼントを受け取る場合
(5)ちょうど4人が自分の持参したプレゼントを受け取る場合
(1)について、1人が自分の持参したプレゼントを受け取る場合は、
5C1=5通りになります。
このうち、残りの4人は自分の持参したプレゼントを受け取らない場合は、前問より9通りになります。
よって、ちょうど1人が自分の持参したプレゼントを受け取る場合は、
5×9=45通りになります。
(2)について、2人が自分の持参したプレゼントを受け取る場合は、
5C2=10通りになります。
このうち、残りの3人は自分の持参したプレゼントを受け取らない場合は、前問より2通りになります。
よって、ちょうど2人が自分の持参したプレゼントを受け取る場合は、
10×2=20通りになります。
(3)について、3人が自分の持参したプレゼントを受け取る場合は、
5C3=10通りになります。
このうち、残りの2人は自分の持参したプレゼントを受け取らない場合は、1通りになります。
よって、ちょうど3人が自分の持参したプレゼントを受け取る場合は、
10×1=10通りになります。
(4)ですが、4人のプレゼントの受け取り方を決めると、残り一人の受け取り方は自動的に決まるので、
ちょうど4人が自分の持参したプレゼントを受け取る場合は0通りになります。
(5)について、ちょうど5人が自分の持参したプレゼントを受け取る場合は、
5C5=1通りになります。
よって、1回目の交換で交換会が終了しない受け取り方は、
45+20+10+0+1=76通りになります。
受け取り方の総数は5!=120通りなので、1回目の交換で交換会が終了する確率は、
(120-76)/120
=44/120
=11/30になります。
参考になった数0
この解説の修正を提案する
前の問題(問37)へ
令和4年度(2022年度)本試験 問題一覧
次の問題(問39)へ