大学入学共通テスト(数学) 過去問
令和5年度(2023年度)追・再試験
問80 (数学Ⅱ・数学B(第2問) 問13)

このページは閲覧用ページです。
履歴を残すには、 「新しく出題する(ここをクリック)」 をご利用ください。

問題

大学入学共通テスト(数学)試験 令和5年度(2023年度)追・再試験 問80(数学Ⅱ・数学B(第2問) 問13) (訂正依頼・報告はこちら)

( ノ )・( ハ )にあてはまるものを1つ選べ。

12+22+…+102をある関数の定積分で表すことを考えよう。
問題文の画像
  • ノ:1  ハ:4
  • ノ:2  ハ:5
  • ノ:1  ハ:6
  • ノ:2  ハ:7

次の問題へ

正解!素晴らしいです

残念...

この過去問の解説 (1件)

01

ツテの回答

tt+1xdx=[x2/2]tt+1

=(t+1)2/2-t2/2

=(2t+1)/2

=t+1/2

 

トナの回答

tt+1x2dx=[x3/3]tt+1

=(t+1)3/3-t3/3

=(t3+3t2+3t+1-t3)/3

=(3t2+3t+1)/3

=t2+t+1/3

 

tについての恒等式は、

t2=lt2+(l+m)t+l/3+m/2+n

なので、

l=1・・・①

l+m=0・・・②

l/3+m/2+n=0・・・③

 

①を②に代入して

m=-1

 

①とm=-1を③に代入して

1/3-1/2+n=0

n=1/6

選択肢3. ノ:1  ハ:6

正解です。

参考になった数0