大学入学共通テスト(数学) 過去問
令和4年度(2022年度)追・再試験
問45 (数学Ⅰ・数学A(第4問) 問1)
問題文
(1)整数kが0≦k<5を満たすとする。77k=5✕15k+2kに注意すると、77kを5で割った余りが1となるのはk=( ア )のときである。
このページは閲覧用ページです。
履歴を残すには、 「新しく出題する(ここをクリック)」 をご利用ください。
問題
大学入学共通テスト(数学)試験 令和4年度(2022年度)追・再試験 問45(数学Ⅰ・数学A(第4問) 問1) (訂正依頼・報告はこちら)
(1)整数kが0≦k<5を満たすとする。77k=5✕15k+2kに注意すると、77kを5で割った余りが1となるのはk=( ア )のときである。
- 1
- 2
- 3
- 4
正解!素晴らしいです
残念...
この過去問の解説 (2件)
01
kが整数で、0≦k<5 のとき、77kを5で割った余りを求める問題です。
77k=5×15k+2k と変形できますが、5×15k は5の倍数なので、ここから出てくる余りはありません。よって、77kを5で割った余りは2kを5で割った余りと同じです。
0≦k<5 なので、以下の通り、表にしてみました。(表1)
これより、77kを5で割った余りが1となるのは k=3 のときだけです。
以上より、解答欄(ア)には「3」の選択肢の番号が入ります。
整数の性質を使った基本的な問題です。表を作って求めましたが、暗算でもすぐに解けると思います。
参考になった数0
この解説の修正を提案する
02
5×15k+2k
を5で割ると、5×15kの部分は0になるので、余りは2kの部分で決まることが分かります。
0≦k<5なので、kに0〜4を代入すると次のようになります。
・k=0のとき、2k=0
0を5で割った余りは0なので不適
・k=1のとき、2k=2
2を5で割った余りは2なので不適
・k=2のとき、2k=4
4を5で割った余りは4なので不適
・k=3のとき、2k=6
6を5で割った余りは1なのでこれが正解です。
・k=4のとき、2k=8
8を5で割った余りは3なので不適
不正解です。
不正解です。
正解です。
不正解です。
1つずつkに値を代入して考えれば、簡単に解ける問題です。
参考になった数0
この解説の修正を提案する
前の問題(問44)へ
令和4年度(2022年度)追・再試験 問題一覧
次の問題(問46)へ