大学入学共通テスト(数学) 過去問
令和4年度(2022年度)追・再試験
問64 (数学Ⅱ・数学B(第1問) 問3)
問題文
座標平面上で、直線3x+2y−39=0をl1とする。また、kを実数とし、直線kx−y−5k+12=0をl2とする。
(1)直線l1とx軸は、点([ アイ ],0)で交わる。
また、直線l2はkの値に関係なく点([ ウ ],[ エオ ])を通り、直線l1もこの点を通る。
(2)2直線l1、l2およびx軸によって囲まれた三角形ができないようなkの値は
k=( カ )、( キク )/( ケ )
である。
このページは閲覧用ページです。
履歴を残すには、 「新しく出題する(ここをクリック)」 をご利用ください。
問題
大学入学共通テスト(数学)試験 令和4年度(2022年度)追・再試験 問64(数学Ⅱ・数学B(第1問) 問3) (訂正依頼・報告はこちら)
座標平面上で、直線3x+2y−39=0をl1とする。また、kを実数とし、直線kx−y−5k+12=0をl2とする。
(1)直線l1とx軸は、点([ アイ ],0)で交わる。
また、直線l2はkの値に関係なく点([ ウ ],[ エオ ])を通り、直線l1もこの点を通る。
(2)2直線l1、l2およびx軸によって囲まれた三角形ができないようなkの値は
k=( カ )、( キク )/( ケ )
である。
- 0
- 1
- 2
- 3
正解!素晴らしいです
残念...
この過去問の解説 (2件)
01
いずれか2直線が並行で交わらない時、
三角形はできません。
従って、
l1 // l2の場合とl2 // x軸の場合を考えれば良いでしょう。
l2がx軸と平行になるのは、
k=0で傾きが0の時です。
また、l2がl1と平行になるのは、
l1:y=-3/2x+39/2と傾きが-3/2なので、
k=-3/2の時です。
参考になった数0
この解説の修正を提案する
02
直線l1、直線l2ともに(5,12)の点を通ることに注意します。
直線l1、l2およびx軸の3直線によって三角形ができないのは以下の2通りの場合です。
・l2がx軸に平行なとき
・2直線が平行のとき(この問題では、同じ点を通るため重なります)
【l2がx軸に平行なとき】
直線がx軸に平行になるのは、xの係数が0になるときです。
すなわち、k=0のときです。
(カ:0)
正解です。
不正解です。
不正解です。
不正解です。
どのような場合に三角形ができないか、座標平面に直線をかきながら考えると良いです。
参考になった数0
この解説の修正を提案する
前の問題(問63)へ
令和4年度(2022年度)追・再試験 問題一覧
次の問題(問65)へ