大学入学共通テスト(数学) 過去問
令和7年度(2025年度)本試験
問33 (数学Ⅰ・数学A(第3問) 問4)
問題文
以下では、例えば、面ABCを含む平面を平面ABC,面ABEDを含む平面を平面ABED,などということにする。
(2)五面体において、面ABCは一辺の長さが3の正三角形であり
AD=7,BE=11,CF=17,DE=9
であるとする。
また、6点A,B,C,D,E,Fはある一つの球面上にあるとし、その球面をSとする。直線ADとBEの交点をPとする。
(ⅰ)平面ABEDと球面Sが交わる部分は円であり、4点A,B,E,Dはその円周上にある。このことから、三角形PABとPEDは相似であることがわかり、その相似比は1:( ウ )である。したがって
( ウ )PA=PB+( エオ )
( ウ )PB=PA+( カ )
が成り立つ。よって
PA=( キ )、PB=( ク )
となる。
( エオ )、( カ )にあてはまるものを1つ選べ。
このページは閲覧用ページです。
履歴を残すには、 「新しく出題する(ここをクリック)」 をご利用ください。
問題
大学入学共通テスト(数学)試験 令和7年度(2025年度)本試験 問33(数学Ⅰ・数学A(第3問) 問4) (訂正依頼・報告はこちら)
以下では、例えば、面ABCを含む平面を平面ABC,面ABEDを含む平面を平面ABED,などということにする。
(2)五面体において、面ABCは一辺の長さが3の正三角形であり
AD=7,BE=11,CF=17,DE=9
であるとする。
また、6点A,B,C,D,E,Fはある一つの球面上にあるとし、その球面をSとする。直線ADとBEの交点をPとする。
(ⅰ)平面ABEDと球面Sが交わる部分は円であり、4点A,B,E,Dはその円周上にある。このことから、三角形PABとPEDは相似であることがわかり、その相似比は1:( ウ )である。したがって
( ウ )PA=PB+( エオ )
( ウ )PB=PA+( カ )
が成り立つ。よって
PA=( キ )、PB=( ク )
となる。
( エオ )、( カ )にあてはまるものを1つ選べ。
- エオ:10 カ:6
- エオ:11 カ:7
- エオ:16 カ:6
- エオ:18 カ:8
- エオ:21 カ:7
正解!素晴らしいです
残念...
この過去問の解説
前の問題(問32)へ
令和7年度(2025年度)本試験 問題一覧
次の問題(問34)へ