大学入学共通テスト(数学) 過去問
令和7年度(2025年度)追・試験
問25 (数学Ⅰ・数学A(第3問) 問2)

このページは閲覧用ページです。
履歴を残すには、 「新しく出題する(ここをクリック)」 をご利用ください。

問題

大学入学共通テスト(数学)試験 令和7年度(2025年度)追・試験 問25(数学Ⅰ・数学A(第3問) 問2) (訂正依頼・報告はこちら)

△OABの内心をIとし、△OABの内接円と辺ABとの接点をLとする。また、△OABの内接円と辺OA,OBとの接点を、それぞれM、Nとする。さらに、∠AOB=2θ,∠OAB=2α,∠OBA=2βとおく。

(2)辺OAと直線BIとの交点をXとする。このとき、辺OA上における2点M,Xの位置関係について考えよう。そのために、∠OMIと∠OXIの大小関係を調べる。まず

∠OMI=( イウ )°

である。また、△OBXに着目し、θ+α+β=90°であることに注意して、
∠OXIをβを用いずに表すと

∠OXI=( イウ )°+( エ )−( オ )

となる。
このことから、( エ )<( オ )のとき点Xは( カ )ことがわかり、( エ )>( オ )のとき点Xは( キ )ことがわかる。

( イ ),( ウ ),( エ ),( オ )にあてはまるものを一つ選べ。
  • イ:6  ウ:0  エ:2α  オ:θ
  • イ:9  ウ:0  エ:α  オ:θ
  • イ:6  ウ:0  エ:2θ  オ:α
  • イ:9  ウ:0  エ:θ  オ:α

次の問題へ

正解!素晴らしいです

残念...

この過去問の解説

まだ、解説がありません。