大学入学共通テスト(数学) 過去問
令和7年度(2025年度)追・試験
問27 (数学Ⅰ・数学A(第3問) 問4)
問題文
(2)辺OAと直線BIとの交点をXとする。このとき、辺OA上における2点M,Xの位置関係について考えよう。そのために、∠OMIと∠OXIの大小関係を調べる。まず
∠OMI=( イウ )°
である。また、△OBXに着目し、θ+α+β=90°であることに注意して、
∠OXIをβを用いずに表すと
∠OXI=( イウ )°+( エ )−( オ )
となる。
このことから、( エ )<( オ )のとき点Xは( カ )ことがわかり、( エ )>( オ )のとき点Xは( キ )ことがわかる。
(3)直線MNとBIとの交点をPとする。
・( エ )<( オ )とする。このとき直線MN上での3点P,M,Nの位置関係に注意すると、∠ONP=( ク ),∠OBP=( ケ )となるので∠MPI=( コ )となる。したがって、4点I,M,P,( サ )は同一円周上にある。
・( エ )>( オ )とする。このとき∠MPI=( シ )となる。したがって、4点I,M,P,( サ )は( ス )。
( ク ),( ケ )にあてはまるものを一つ選べ。
このページは閲覧用ページです。
履歴を残すには、 「新しく出題する(ここをクリック)」 をご利用ください。
問題
大学入学共通テスト(数学)試験 令和7年度(2025年度)追・試験 問27(数学Ⅰ・数学A(第3問) 問4) (訂正依頼・報告はこちら)
(2)辺OAと直線BIとの交点をXとする。このとき、辺OA上における2点M,Xの位置関係について考えよう。そのために、∠OMIと∠OXIの大小関係を調べる。まず
∠OMI=( イウ )°
である。また、△OBXに着目し、θ+α+β=90°であることに注意して、
∠OXIをβを用いずに表すと
∠OXI=( イウ )°+( エ )−( オ )
となる。
このことから、( エ )<( オ )のとき点Xは( カ )ことがわかり、( エ )>( オ )のとき点Xは( キ )ことがわかる。
(3)直線MNとBIとの交点をPとする。
・( エ )<( オ )とする。このとき直線MN上での3点P,M,Nの位置関係に注意すると、∠ONP=( ク ),∠OBP=( ケ )となるので∠MPI=( コ )となる。したがって、4点I,M,P,( サ )は同一円周上にある。
・( エ )>( オ )とする。このとき∠MPI=( シ )となる。したがって、4点I,M,P,( サ )は( ス )。
( ク ),( ケ )にあてはまるものを一つ選べ。
- ク:θ ケ:180°−θ
- ク:α ケ:180°−α
- ク:β ケ:180°−β
- ク:90°−θ ケ:β
- ク:90°−α ケ:β
- ク:90°−β ケ:β
- ク:180°−θ ケ:θ
- ク:180°−α ケ:θ
- ク:180°−β ケ:θ
正解!素晴らしいです
残念...
この過去問の解説
前の問題(問26)へ
令和7年度(2025年度)追・試験 問題一覧
次の問題(問28)へ